Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells.
نویسندگان
چکیده
Embryonic cells before implantation are exposed to a hypoxic condition and dependent on anaerobic metabolism. Human embryonic stem cells (HESCs) derived from pre-implantation blastocyst also grow well in hypoxic conditions. Expecting that the differentiating HESCs might mimic anaerobic-to-aerobic metabolic transition of the early human life, we examined the mitochondria-related changes in these cells. We observed that mitochondrial mass and mitochondrial DNA content were increased with differentiation, which was accompanied by the increase of the amount of ATP (4-fold) and its by-product reactive oxygen species (2.5-fold). The expression of various antioxidant enzymes including mitochondrial and cytoplasmic superoxide dismutases, catalase, and peroxiredoxins showed a dramatic change during the early differentiation. In conclusion, HESC differentiation was followed by dynamic changes in mitochondrial mass, ATP and ROS production, and antioxidant enzyme expressions. Therefore, the HESCs would serve as a good model to examine the mitochondrial biology during the early human differentiation.
منابع مشابه
Comparison of BAX and Bcl-2 Expression During Human Embryonic Stem Cell Differentiation into Cardiomyocytes and Doxorubicin-induced Apoptosis
Back ground: Although the cell differentiation is an inseparable part of development in multicellular organisms, the regulating molecular pathway of it still is not fully defined. In the other hand, apoptosis is a fundamental physiological process which plays an essential role in a variety of biological events during development. Moreover, recent studies have found that apoptosis shows several ...
متن کاملComparison of Germ Cell Gene Expressions in Spontaneous Monolayer versus Embryoid Body Differentiation of Mouse Embryonic Stem Cells toward Germ Cells
Objective Genetic and morphologic similarities between mouse embryonic stem cell (ESCs) and Primordial Germ Cell (PGCs) make it difficult to distinguish the two cell types in in vitro differentiation. Using the expression of specific markers of germ cells that are not expressed or expressed at low levels in ESCs, can help recognizing in vitro differentiated cells MaterialsAndMethods In this stu...
متن کاملNuclear Architecture and Epigenetics of Lineage Choice
Differentiation is an epigenetic process which is installed by changes of transcriptional programs over successive cellular divisions. A number of studies have reported the effects of biochemical modifications of chromatin (DNA and chromatin proteins) on the regulation of transcription. Although, these studies are able to explain how transcription of a given gene is regulated (toward activation...
متن کاملReview Paper: Embryonic Stem Cell and Osteogenic Differentiation
Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells, including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cell...
متن کاملDifferentiation of human embryonic stem cells into neurons
Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemical and biophysical research communications
دوره 348 4 شماره
صفحات -
تاریخ انتشار 2006